Anchor Deezer Spotify

Reciclagem: O desafio de reciclar baterias de lítio

Reciclagem: O desafio de reciclar baterias de lítio

Essenciais para promover a mobilidade elétrica, as baterias de íons-lítio conseguem concentrar muita energia em um espaço reduzido e pesam bem menos do que modelos que utilizam outros materiais. Essas duas características – alta densidade energética e leveza – fazem com que sejam as mais utilizadas não apenas em veículos elétricos, mas também em smartphones e notebooks.

Ao chegarem ao fim da vida útil e serem descartadas, contudo, as baterias de lítio transformam-se em um problema ambiental. Para contornar essa situação, grupos de pesquisa em todo o mundo estudam formas de reciclar e reaproveitar os metais que compõem esses módulos, como cobalto, lítio, cobre, grafite e alumínio. No Brasil, um dos trabalhos mais avançados é conduzido no Center for Advanced and Sustainable Technologies (Cast), da Faculdade de Engenharia da Universidade Estadual Paulista (Unesp) em São João da Boa Vista (SP).

“Nossas técnicas possibilitam a recuperação e o reaproveitamento de materiais com potencial tóxico e estimulam a economia circular. Com isso, é possível reduzir o impacto ambiental que seria gerado por novas atividades minerais”, destaca o engenheiro ambiental José Augusto de Oliveira, coordenador do Cast. As metodologias em desenvolvimento recorrem a processos de hidrometalurgia, que preveem a lixiviação, ou seja, a separação dos metais contidos nas baterias por sua contínua dissolução em meio aquoso.

Uma bateria de íons-lítio é composta por várias pequenas pilhas, chamadas de células, que formam um pacote maior, ou pack, no jargão dos engenheiros (ver Pesquisa FAPESP no 261). A primeira etapa de qualquer processo de reciclagem ou reaproveitamento de baterias é o desmembramento do pack. O procedimento mais tradicional prevê a detecção das células que ainda estão aptas a formar um novo pacote, dando origem a uma bateria de segunda vida. As células que chegaram ao fim de sua vida útil são encaminhadas para o descarte. São essas células o foco do trabalho dos pesquisadores do Cast.

Campo de mineração de lítio no deserto do Atacama, no Chile — Foto: LFREEDOM_WANTED / Alamy / Fotoarena
Campo de mineração de lítio no deserto do Atacama, no Chile — Foto: LFREEDOM_WANTED / Alamy / Fotoarena

A sequência do processo desenvolvido na Unesp, conforme descrição de Oliveira, envolve a separação de todos os componentes das células, como os plásticos contidos no invólucro e usados como isolante entre a estrutura metálica e o material interno. Esse último é constituído pelo cátodo (polo positivo da bateria), uma lâmina de alumínio onde estão os óxidos de lítio e de cobalto, pelo ânodo (polo negativo), uma lâmina de cobre envolvida em grafite, e por uma membrana plástica que faz a separação entre os dois polos. Por estar em contato com ambos, essa membrana pode conter grafite e óxidos metálicos.

O desmanche da célula é feito manualmente, com o auxílio de máquinas para cortar. As folhas metálicas obtidas são submetidas a um banho com uma solução química aquosa criada para remover o cobre e o alumínio, que já saem do processo prontos para a reutilização. Já o grafite e os óxidos de lítio e de cobalto com alto grau de pureza são obtidos após a filtração das respectivas soluções. O processamento da membrana exige, igualmente, uma filtração e uma etapa posterior de separação para a purificação dos óxidos metálicos presentes nela.

“Os reagentes químicos utilizados são de fontes orgânicas. Foram escolhidos para minimizar impactos ambientais e maximizar o benefício econômico e a segurança laboral”, explica a química Mirian Paula dos Santos, pesquisadora responsável pelo processo de extração dos óxidos metálicos. “A tecnologia está sendo aprimorada. Só no final do processo, vamos conseguir calcular os impactos ambientais e a viabilidade econômica”, ressalta. Por ora, diz ela, a técnica está validada em escala laboratorial.

O potencial econômico da metodologia, de acordo com Oliveira, é favorável. “Estudos iniciais indicam que a venda do óxido de lítio gera recursos suficientes para cobrir os gastos da reciclagem”, diz. A etapa atual de desenvolvimento da técnica, que gerou um depósito de patente no Instituto Nacional da Propriedade Industrial (INPI) em 2020, proporciona uma taxa de recuperação de 90% do óxido de lítio com 98% de pureza; quando contaminado com grafite, a taxa é de 50% de pureza. Os componentes restantes da bateria são totalmente recuperáveis, de acordo com artigo publicado em 2021 na revista científica Resources, Conservation and Recycling.

Esses resultados permitiram à Unesp fechar um acordo de desenvolvimento tecnológico e de licenciamento de uma versão de seu processo de reciclagem, com novos reagentes, com uma empresa brasileira com atuação global. Em um primeiro momento, o objetivo é utilizar a tecnologia para reciclar as baterias dos veículos que ela produz. Posteriormente, antecipa Oliveira, a companhia, cujo nome não pode ser revelado por questões contratuais, avalia com a Unesp uma estratégia comercial para viabilizar a oferta do serviço de reciclagem de forma abrangente a terceiros. A cooperação entre a universidade e a multinacional conta com apoio da FAPESP por meio do programa Pesquisa em Parceria para Inovação Tecnológica (Pite).

Outra técnica para reciclagem das baterias de íons-lítio em desenvolvimento no Cast segue uma rota não convencional, que utiliza água em condição supercrítica como solvente para recuperar os óxidos metálicos. “Para isso, a água deve ser submetida a uma temperatura superior a 374 graus Celsius [oC] e a uma pressão de 240 atmosferas [atm]. Sob essas condições, já não há mais diferença entre seu estado líquido e gasoso”, descreve o engenheiro químico Lúcio Cardozo Filho, responsável pelo projeto de pesquisa. “A água supercrítica, submetida a temperatura e pressão extremas, tem uma reatividade adequada para processar, tratar e extrair compostos inorgânicos, como os óxidos metálicos encontrados nas baterias de lítio.”

Embora levar a água à condição supercrítica não seja trivial, o fluido utilizado, segundo Cardozo, não precisa ser de boa qualidade, podendo ser água de reúso, e o processo não emprega nenhum reagente químico adicional para a extração dos óxidos metálicos. “O sucesso na separação dos metais supera 98%”, informa o engenheiro. O resultado alcançado é uma mistura de óxidos metálicos, conhecido como black mass, que ainda precisará passar por um processo de separação e purificação comumente usado na hidrometalurgia convencional. “Nosso próximo desafio é conseguir recursos adicionais para escalar o processo”, antecipa Cardozo Filho.

A reciclagem de baterias de íons-lítio é um processo mais sustentável e econômico do que a retirada dos minerais da natureza. No caso do lítio, são necessários 100 quilos (kg) do mineral bruto para produzir 1,6 kg de lítio. Já um processo de reciclagem é capaz de recuperar 7 kg de óxido de lítio em cada 100 kg de bateria. A extração do minério tem alto impacto ambiental pelo uso intensivo de água, além de o refino ser eletrointensivo, com os materiais rochosos aquecidos a temperaturas acima de 1.000 ºC, o que consome muita energia.

A demanda global por armazenamento em baterias de lítio deve crescer de 700 gigawatts-hora (GWh) em 2022 para 4,7 mil GWh em 2030, de acordo com estudo da consultoria McKinsey. O aumento da demanda, dizem especialistas, faz com que a recuperação e o reaproveitamento dos materiais metálicos que formam essas baterias se imponham.

O setor automotivo é o principal destino das baterias de lítio, com cerca de 80% da produção sendo direcionada às montadoras. Uma bateria veicular típica para veículos elétricos pesa mais de 200 kg e tem vida útil entre 8 e 10 anos. A Agência Internacional de Energia (AIE) estima que a produção de lítio precisará crescer quase dez vezes até 2050 para atender ao aumento da demanda mundial do produto.

“A produção de insumos corre o risco de não acompanhar a crescente demanda global. O resultado é que poderemos ter escassez de baterias até 2030”, alerta o físico Hudson Zanin, da Faculdade de Engenharia Elétrica e Computação da Universidade Estadual de Campinas (Feec-Unicamp), coordenador de uma pesquisa que visa desenvolver uma bateria à base de sódio (ver Pesquisa FAPESP no 329). “A reciclagem e a integração progressiva dos materiais recuperados nas novas baterias oferecem vantagens tanto do ponto de vista ambiental quanto econômico, garantindo o suprimento de insumos”, afirma.

Zanin explica que os principais processos de reciclagem empregados no mundo são os pirometalúrgicos e os hidrometalúrgicos, que, segundo o pesquisador, alcançam uma eficiência superior a 80%. Na pirometalurgia, a incineração do material pode liberar gases tóxicos, o que é indesejável.

Já os processos de hidrometalurgia, apesar de consumirem água, poluem menos e demandam menos energia. “O gasto de água é bem menor do que o da mineração do lítio. Nos processos de reciclagem por hidrometalurgia, utiliza-se em torno de 5 litros [L] de água para a obtenção de 100 gramas [g] de sal de lítio. Na mineração, o consumo de água pode variar de 50 a 90 L para se obter 100 g de carbonato de lítio”, informa Oliveira.

A remanufatura de baterias de lítio em novos packs com o aproveitamento das células que perderam rendimento, mas ainda não chegaram ao fim de seu ciclo de vida, é foco de um projeto que o centro de inovação CPQD desenvolve em Campinas (SP) em parceria com a CPFL Energia e a BYD, fabricante chinesa de baterias e veículos elétricos.

Como explica o engenheiro Aristides Ferreira, gerente de soluções de sistemas de energia do CPQD, as baterias utilizadas pelos veículos elétricos são tracionárias, ou seja, são usadas para a tração do veículo e, para isso, são submetidas a condições operacionais intensas. Após um período que varia de 8 a 10 anos, dependendo do uso, perdem capacidade de armazenar energia e gerar a tração necessária para movimentar um veículo. Mas ainda podem ser úteis em aplicações menos exigentes, como baterias estacionárias, sistemas de backup e módulos de armazenamento de energia de fontes de geração solar e eólica, que são intermitentes. Permitem, por exemplo, acumular a energia gerada durante o dia em um painel solar fotovoltaico para o aproveitamento noturno ou a energia de fonte eólica quando não há vento.

O projeto do CPQD envolveu a criação de algoritmos capazes de verificar a qualidade das células retiradas de uma bateria veicular de íons-lítio e determinar sua longevidade, sem a necessidade de longos ensaios laboratoriais, facilitando a seleção das melhores células em uma segunda vida em baterias estacionárias. O CPQD já desenvolveu um protótipo de bateria de segunda vida, que se encontra em fase de testes em um laboratório que possui planta de geração de energia fotovoltaica na Unicamp.